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Laminated Deployable 
Optics

The Best of Two Technologies
Nickel electroformed replica: 
Smooth, accurate optical 
surfaces

Shape memory polymer- carbon 
fiber reinforced, for light weight 
and controllable deployment

Deployable, lightweight reflectorsDeployable, lightweight reflectors
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ESSP Needs for 
Deployable Reflectors

• ESTO Workshop (2003) identified multiple mission needs for 
deployable imaging systems requiring apertures of 1 to 5 meters 
and larger
⎯Microwave- soil moisture, temp radiometry, cloud heights
⎯ IR- temperature measurement, radiometry
⎯SAR
⎯Visible- Lasercom, LIDAR

• Deployable reflectors are an enabling technology for many 
missions
⎯Lighter weight and stiffer optics 
⎯ Instrument capabilities enhanced at larger apertures
⎯Cross enterprise value to OSS, Exploration missions
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Science Enabled by Deployable 
Optics Technologies

2003
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Deployable Antenna 
Requirements
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Why Consider Shape Memory 
Composite Reflectors?

• Replication – Reduced production time and cost
• Larger design parameter space; low mass, compact 

packing, high stiffness, segmented or monolithic
• Adaptable to simple in-space deployment and active 

control
• Better surface accuracy than mesh and inflatable
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Laminated Reflector Concept 
Replicated Nickel/Composite

• Surface Replication: low stress nickel
⎯Replicates optical figure
⎯Good surface finish (<2nm RMS)
⎯Tough, flexible, established processes
⎯Etched for reliable adhesion

• Shape memory resin composite
⎯High stiffness, low mass (1-5 kg/m2)
⎯Replicated Production
⎯Low outgassing (< 0.16% TML)
⎯Deployable
⎯Resin ratio adjusted to match nickel CTE
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Ball Aerospace, CRG, North-
western Univ. Responsibilities

• Ball Aerospace
⎯Concept development and evaluation
⎯Integrated Modeling 
⎯Application engineering

• Cornerstone Research Group
⎯Specialized shape memory polymer tailoring
⎯Composite reinforcement
⎯Fabrication of composites

• Northwestern University
⎯Electroplated optics fabrication 
⎯Nickel etching, coatings
⎯Materials research expertise
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Extensive process development 
and controls required

• Key Problems for reflector manufacture:
⎯Manage the interface stress between the composite 

and nickel for adhesion and shape control
⎯Deployment hysteresis
⎯Material stability

• Addressed through:
⎯Thermal and Structural Modeling of the composite 

structure and nickel
⎯Electroplating process control for low stress plating and 

rear surface treatment
⎯Composite resin and process selection 
⎯Composite structure development: fiber selection and 

orientation; resin fillers
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Detailed Modeling Goals

• Update material constructions
⎯Symmetric laminations for stability and uniformity

• Comparison with strain measurements made on samples
⎯New constructions fabricated and tested

• Scalability
⎯Utilize scaling methods developed for other large space 

structures
• Thermal deformations

⎯Balanced constructions minimize thermal deformation level
• Resonant Frequency

⎯Mass / size are drivers for fibers, thickness, # layers, 
deployability

• Thermal actuation 
⎯Analysis demonstrated feasibility of deployment via solar 

heating, with appropriate thermal coatings



Page  11
B8P2  June 30, 2005

Resonant Frequency for a 30 cm 
Mirror

First and Second Mode ShapeFirst and Second Mode Shape

Third and Fourth Mode ShapeThird and Fourth Mode Shape

Material F1 
(Hz)

F2 
(Hz)

F3 
(Hz)

F4 
(Hz)

T700 30.3 42.5 72.3 105.

M55J 38.7 58.0 90.6 148.

K13C2U 47.1 72.9 111. 191.
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Resonant Frequency for a 5m 
Mirror

Material F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz)
T700 0.145 0.290 0.268 0.399
M55J 0.191 0.298 0.338 0.565
K13C2U 0.239 0.386 0.415 0.736

Using the same (0.060 in) thickness:Using the same (0.060 in) thickness:

Frequency vs Thickness for a 5m Mirror
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5m Mirror Mass:5m Mirror Mass:
(from NASTRAN FEM)(from NASTRAN FEM)
1.5 mm thick: 58 kg1.5 mm thick: 58 kg
7.6 mm thick: 274 kg7.6 mm thick: 274 kg
15 mm thick: 544 kg15 mm thick: 544 kg



Page  13
B8P2  June 30, 2005

Shape Change for a  ±1° Side to 
Side Gradient are minor effect

Deformed Shape for a T700 Mirror with Ni CoatingDeformed Shape for a T700 Mirror with Ni Coating

Displacements in inchesDisplacements in inches
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Replication process

• Polish and prepare mandrel

• Electroplate Nickel

• Etch Nickel for adhesion

• Lay-up and cure composite

• Remove from Mandrel

• Characterize surface

• Prepare for stow and deploy 
testing and further 
measurement
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Low Stress Electroplating
Forms the Reflective Surface

Shaped 
Mandrel

“-” cathode
“+” anode 
(consumable)

e- e-

Ni

Ni++

Electrolyte

Process adapted from fabrication of Wolter X-Ray 
optics
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Surface roughness replication 
achieved  2nm RMS

Zygo interferometer scan 
data shows nickel can 
meet at least 2 nm 
roughness

Zygo interferometer scan data 
from a developmental cyanate 
ester resin cast sample. 
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Plasma Etching Prepares Nickel 
Electroforms for Composite

Fixture and mirror 
mandrel

The cathode structure 
and sputtering 
target

The plasma etching 
viewed through a 
quartz window 

Color is characteristic 
of the argon plasma

Rear surface of 30cm 
plasma-etched 

electroform
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Etching of Nickel Increases 
Roughness Profile and Improves 

Adhesion

3000 X 
magnification

Etched, plated surface
250X magnification

(microns(microns
))

ÅÅ

Mesh ProfileMesh Profile

As-plated Etched



Page  19
B8P2  June 30, 2005

Shape Memory Polymers
Application

Cured shape---

Stow/Deploy 
actuation--

Stowed ---

• Replication
⎯Replicate surface from master in manufacturing 

processes
• Actuation

⎯Store and release mechanical energy
• Reconfiguration

⎯Temporary modulus reduction to enable shape change
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SMP Development - Cyanate Ester

• CE polymers are already used in 
space 

• Conventional CE transformed to 
SMP
⎯Fully cured, cross-linked for stability
⎯Required new polymer design

• CE shape memory polymer results:
⎯Deformation-recovery cycle 

demonstrated
⎯Activation temperature of 160oC

• Improvements Continuing
⎯Enhanced strain recovery
⎯ Increased toughness

Cyanate Ester SMP

Thermoset

Elastomer

6535 Formulation
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More uniform recovery from 23% 
strain achieved. Tg = 174 °C
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Cyanate Ester Shape Memory 
Resins- Acceptable Outgassing

• Total Mass Loss (TML) and Condensed Outgassing 
Product (COP) tests on cyanate ester SMP and 
composites found them to be space-qualifiable

Log # Material TML % COP % 
58 SynLam TM with 3D Carbon Fabric 0.292 0.027 
59 Triaxial weave Carbon Composite 0.059 0.012 
66 Neat CE SMP Resin 0.147 0.006 

- Acceptable levels 1.0 0.1
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Reinforcement Materials
Investigated

Fabric Material 
Tensile 

Strength 
(MPa) 

Tensile 
Modulus 

(GPa) 
Strain% Density 

(g/cc) CTE%

T300, 3530 230 1.5 1.76 -4.1 

T700, 0,±60 4900 230 2.1 1.8 -3.8 

1K 0,±60 Open 
Weave 3875 233.5 1.65 1.76 -4.1 

Microspheres Average Particle 
Size (µm) 

Average Particle Density 
(g/cc) Strength (MPa) 

Glass 55 0.25 6.89, 40% Collapse 

Carbon 55 0.4 - 

Phenolic 70 0.11 6.89 
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Print through remains a 
challenge, but is significantly 

reduced
• Fiber-resin CTE mismatch 

produces print through
• Sandwich approach is 

improvement, without fibers 
near surface

• Neat (resin rich) layer 
surrounds fiber reinforcement

• Nanofibers and alternate filler 
reinforcement being 
investigated

• Neat resin layer reduces fiber 
print-through effect, but 
nickel-thermal mismatch 
caused waviness
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Deployed Mirror surface 
undamaged by deployment

• Buckling was observed 
only where delaminated

• Remains smooth after 
several heat cycles

• Underlying fibers and resin 
undamaged
Surface remains a good reflector after several 
heating and deformation cycles

Surface damaged by deployment 
only where delaminated
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Composite Thermal &
Bending Fatigue Test

• Thermal Cycling showed no damage or changes
Samples of composite have been temperature cycled 
10x between –20C to +50C. 

SEM photos before and after from 25x to 3000x show no change or microcracking in the resin 
or fibers. Microscope inspection of composite samples subjected to repeated cycling from 
room temperature to +200C have not shown evidence of resin of fiber cracking.

1000x SEM before cycling 1000x SEM after cycling
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Shape Memory Reflector 
Feasibility Demonstrated

• Figure: Low stress nickel process produces <10 waves PTP mirror. 
Composite replication needs further development

• Roughness: Low scatter nickel achieved 2nm RMS
• Outgassing: Shape Memory CE resin meets requirements (0.16% TML)
• Spherical Surfaces: Reinforced composite SMP applied to flat and 

spherical nickel plating surfaces
• Adhesion: Demonstrated ruggedness of nickel-composite lamination
• Stow and deployment demonstrated without damage to optical surface, 

deployment repeatability needs development
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1m reflector optics in 
development

Areal Density 0.4 kg/m2

Carbon fiber Triax Weave
Surfaces << 1mm
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Conclusions

• Laminated nickel – composite optics can provide 
deployable, highly reflective surfaces without 
delamination or deterioration of metal surface and 
substrate

• Typical deployment accuracy is consistent with needs 
for 15GHz microwave reflectors of 1-2 meter diameter, 
and further development for surface accuracy 
adequate at higher frequencies 

• Additional work needs to be done in:
⎯Resin chemistry (greater elongation, low CTE, low temp 

cure) 
⎯Structures (optimizing deployment, modeling in stow 

condition)
⎯Durability verification in the space environment
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